Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks - Umberto Michelucci - cover
Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks - Umberto Michelucci - cover
Dati e Statistiche
Wishlist Salvato in 1 lista dei desideri
Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks
Disponibilità in 10 giorni lavorativi
29,44 €
-15% 34,64 €
29,44 € 34,64 € -15%
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-15% 34,64 € 29,44 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-15% 34,64 € 29,44 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Applied Deep Learning: A Case-Based Approach to Understanding Deep Neural Networks - Umberto Michelucci - cover
Chiudi

Promo attive (0)

Descrizione


Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You'll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appreciate how libraries such as TensorFlow allow quick and efficient experiments. Case studies for each method are included to put into practice all theoretical information. You'll discover tips and tricks for writing optimized Python code (for example vectorizing loops with NumPy). What You Will Learn Implement advanced techniques in the right way in Python and TensorFlow Debug and optimize advanced methods (such as dropout and regularization) Carry out error analysis (to realize if one has a bias problem, a variance problem, a data offset problem, and so on) Set up a machine learning project focused on deep learning on a complex dataset Who This Book Is For Readers with a medium understanding of machine learning, linear algebra, calculus, and basic Python programming.
Leggi di più Leggi di meno

Dettagli

2018
Paperback / softback
410 p.
Testo in English
254 x 178 mm
817 gr.
9781484237892
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore