Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server - Joshua Cook - cover
Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server - Joshua Cook - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server
Attualmente non disponibile
26,74 €
-9% 29,39 €
26,74 € 29,39 € -9%
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-9% 29,39 € 26,74 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-9% 29,39 € 26,74 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Docker for Data Science: Building Scalable and Extensible Data Infrastructure Around the Jupyter Notebook Server - Joshua Cook - cover
Chiudi

Promo attive (0)

Descrizione


Learn Docker "infrastructure as code" technology to define a system for performing standard but non-trivial data tasks on medium- to large-scale data sets, using Jupyter as the master controller. It is not uncommon for a real-world data set to fail to be easily managed. The set may not fit well into access memory or may require prohibitively long processing. These are significant challenges to skilled software engineers and they can render the standard Jupyter system unusable. As a solution to this problem, Docker for Data Science proposes using Docker. You will learn how to use existing pre-compiled public images created by the major open-source technologies-Python, Jupyter, Postgres-as well as using the Dockerfile to extend these images to suit your specific purposes. The Docker-Compose technology is examined and you will learn how it can be used to build a linked system with Python churning data behind the scenes and Jupyter managing these background tasks. Best practices in using existing images are explored as well as developing your own images to deploy state-of-the-art machine learning and optimization algorithms. What You'll Learn Master interactive development using the Jupyter platform Run and build Docker containers from scratch and from publicly available open-source images Write infrastructure as code using the docker-compose tool and its docker-compose.yml file type Deploy a multi-service data science application across a cloud-based system Who This Book Is For Data scientists, machine learning engineers, artificial intelligence researchers, Kagglers, and software developers
Leggi di più Leggi di meno

Dettagli

2017
Paperback / softback
257 p.
Testo in English
235 x 155 mm
4336 gr.
9781484230114
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore