Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Hands-On Machine Learning with C#: Build smart, speedy, and reliable data-intensive applications using machine learning - Matt R. Cole - cover
Hands-On Machine Learning with C#: Build smart, speedy, and reliable data-intensive applications using machine learning - Matt R. Cole - cover
Dati e Statistiche
Wishlist Salvato in 1 lista dei desideri
Hands-On Machine Learning with C#: Build smart, speedy, and reliable data-intensive applications using machine learning
Disponibilità in 10 giorni lavorativi
28,61 €
-6% 30,44 €
28,61 € 30,44 € -6%
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 30,44 € 28,61 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 30,44 € 28,61 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Hands-On Machine Learning with C#: Build smart, speedy, and reliable data-intensive applications using machine learning - Matt R. Cole - cover
Chiudi

Promo attive (0)

Descrizione


Explore supervised and unsupervised learning techniques and add smart features to your applications Key Features Leverage machine learning techniques to build real-world applications Use the Accord.NET machine learning framework for reinforcement learning Implement machine learning techniques using Accord, nuML, and Encog Book DescriptionThe necessity for machine learning is everywhere, and most production enterprise applications are written in C# using tools such as Visual Studio, SQL Server, and Microsoft Azur2e. Hands-On Machine Learning with C# uniquely blends together an understanding of various machine learning concepts, techniques of machine learning, and various available machine learning tools through which users can add intelligent features.These tools include image and motion detection, Bayes intuition, and deep learning, to C# .NET applications. Using this book, you will learn to implement supervised and unsupervised learning algorithms and will be better equipped to create excellent predictive models. In addition, you will learn both supervised and unsupervised forms of regression, mainly logistic and linear regression, in depth. Next, you will use the nuML machine learning framework to learn how to create a simple decision tree. In the concluding chapters, you will use the Accord.Net machine learning framework to learn sequence recognition of handwritten numbers using dynamic time warping. We will also cover advanced concepts such as artificial neural networks, autoencoders, and reinforcement learning. By the end of this book, you will have developed a machine learning mindset and will be able to leverage C# tools, techniques, and packages to build smart, predictive, and real-world business applications. What you will learn Learn to parameterize a probabilistic problem Use Naive Bayes to visually plot and analyze data Plot a text-based representation of a decision tree using nuML Use the Accord.NET machine learning framework for associative rule-based learning Develop machine learning algorithms utilizing fuzzy logic Explore support vector machines for image recognition Understand dynamic time warping for sequence recognition Who this book is forHands-On Machine Learning with C#is forC# .NETdevelopers who work on a range of platforms from .NET and Windows to mobile devices. Basic knowledge of statistics is required.
Leggi di più Leggi di meno

Dettagli

2018
Paperback / softback
274 p.
Testo in English
92 x 75 mm
9781788994941
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore