Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Learning Representation and Control in Markov Decision Processes: New Frontiers - Sridhar Mahadevan - cover
Learning Representation and Control in Markov Decision Processes: New Frontiers - Sridhar Mahadevan - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Learning Representation and Control in Markov Decision Processes: New Frontiers
Disponibilità in 10 giorni lavorativi
164,50 €
164,50 €
Disp. in 10 gg
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
164,50 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
164,50 €
Vai alla scheda completa
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Learning Representation and Control in Markov Decision Processes: New Frontiers - Sridhar Mahadevan - cover
Chiudi

Promo attive (0)

Descrizione


Learning Representation and Control in Markov Decision Processes describes methods for automatically compressing Markov decision processes (MDPs) by learning a low-dimensional linear approximation defined by an orthogonal set of basis functions. A unique feature of the text is the use of Laplacian operators, whose matrix representations have non-positive off-diagonal elements and zero row sums. The generalized inverses of Laplacian operators, in particular the Drazin inverse, are shown to be useful in the exact and approximate solution of MDPs. The author goes on to describe a broad framework for solving MDPs, generically referred to as representation policy iteration (RPI), where both the basis function representations for approximation of value functions as well as the optimal policy within their linear span are simultaneously learned. Basis functions are constructed by diagonalizing a Laplacian operator or by dilating the reward function or an initial set of bases by powers of the operator. The idea of decomposing an operator by finding its invariant subspaces is shown to be an important principle in constructing low-dimensional representations of MDPs. Theoretical properties of these approaches are discussed, and they are also compared experimentally on a variety of discrete and continuous MDPs. Finally, challenges for further research are briefly outlined. This is a timely exposition of a topic with broad interest within machine learning and beyond.
Leggi di più Leggi di meno

Dettagli

Foundations and Trends (R) in Machine Learning
2009
Paperback / softback
184 p.
Testo in English
234 x 156 mm
268 gr.
9781601982384
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore