Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms - Rina Dechter - cover
Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms - Rina Dechter - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms
Attualmente non disponibile
59,81 €
59,81 €
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
59,81 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
59,81 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms - Rina Dechter - cover
Chiudi

Promo attive (0)

Descrizione


Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.
Leggi di più Leggi di meno

Dettagli

Synthesis Lectures on Artificial Intelligence and Machine Learning
2013
Paperback / softback
191 p.
Testo in English
235 x 187 mm
9781627051972
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore