Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Offerta imperdibile
Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies - Chong Li,Meikang Qiu - cover
Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies - Chong Li,Meikang Qiu - cover
Dati e Statistiche
Wishlist Salvato in 0 liste dei desideri
Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies
Attualmente non disponibile
76,00 €
-6% 80,85 €
76,00 € 80,85 € -6%
Attualmente non disp.
Chiudi

Altre offerte vendute e spedite dai nostri venditori

Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 80,85 € 76,00 €
Altri venditori
Prezzo e spese di spedizione
ibs
Spedizione Gratis
-6% 80,85 € 76,00 €
Altri venditori
Prezzo e spese di spedizione
Chiudi
ibs
Chiudi

Tutti i formati ed edizioni

Chiudi
Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies - Chong Li,Meikang Qiu - cover
Chiudi

Promo attive (0)

Descrizione


Reinforcement Learning for Cyber-Physical Systems: with Cybersecurity Case Studies was inspired by recent developments in the fields of reinforcement learning (RL) and cyber-physical systems (CPSs). Rooted in behavioral psychology, RL is one of the primary strands of machine learning. Different from other machine learning algorithms, such as supervised learning and unsupervised learning, the key feature of RL is its unique learning paradigm, i.e., trial-and-error. Combined with the deep neural networks, deep RL become so powerful that many complicated systems can be automatically managed by AI agents at a superhuman level. On the other hand, CPSs are envisioned to revolutionize our society in the near future. Such examples include the emerging smart buildings, intelligent transportation, and electric grids. However, the conventional hand-programming controller in CPSs could neither handle the increasing complexity of the system, nor automatically adapt itself to new situations that it has never encountered before. The problem of how to apply the existing deep RL algorithms, or develop new RL algorithms to enable the real-time adaptive CPSs, remains open. This book aims to establish a linkage between the two domains by systematically introducing RL foundations and algorithms, each supported by one or a few state-of-the-art CPS examples to help readers understand the intuition and usefulness of RL techniques. Features Introduces reinforcement learning, including advanced topics in RL Applies reinforcement learning to cyber-physical systems and cybersecurity Contains state-of-the-art examples and exercises in each chapter Provides two cybersecurity case studies Reinforcement Learning for Cyber-Physical Systems with Cybersecurity Case Studies is an ideal text for graduate students or junior/senior undergraduates in the fields of science, engineering, computer science, or applied mathematics. It would also prove useful to researchers and engineers interested in cybersecurity, RL, and CPS. The only background knowledge required to appreciate the book is a basic knowledge of calculus and probability theory.
Leggi di più Leggi di meno

Dettagli

2019
Hardback
238 p.
Testo in English
235 x 156 mm
558 gr.
9781138543539
Chiudi
Aggiunto

L'articolo è stato aggiunto al carrello

Chiudi

Aggiungi l'articolo in

Chiudi
Aggiunto

L’articolo è stato aggiunto alla lista dei desideri

Chiudi

Crea nuova lista

Chiudi

Chiudi

Siamo spiacenti si è verificato un errore imprevisto, la preghiamo di riprovare.

Chiudi

Verrai avvisato via email sulle novità di Nome Autore